Sex in Fungi

Molecular Determination and Evolutionary Implications
This page intentionally left blank
Contents

Contributors ix
Preface xv
Dedication: Ira Herskowitz xix
Appreciation: John and Cardy Raper xxiii

1. GENERAL PRINCIPLES
1 The Evolution of MAT: the Ascomycetes 3
Geraldine Butler
2 Evolution of the Mating-Type Locus: the Basidiomycetes 19
James A. Fraser, Yen-Ping Hsueh, Keisha M. Findley,
and Joseph Heitman
3 Mechanisms of Homothallism in Fungi and Transitions between
Heterothallism and Homothallism 35
Xiaorong Lin and Joseph Heitman
4 Mating-Type Locus Control of Cell Identity 59
Brynn C. Stanton and Christina M. Hull
5 Rewiring Transcriptional Circuitry: Mating-Type Regulation in
Saccharomyces cerevisiae and Candida albicans as a Model for
Evolution 75
Annie E. Tsong, Brian B. Tuch, and Alexander D. Johnson
II. ASCOMYCETES: FROM MODEL YEASTS TO PLANT AND HUMAN PATHOGENS

6 Cochliobolus and Podospora: Mechanisms of Sex Determination and the Evolution of Reproductive Lifestyle 93
B. Gillian Turgeon and Robert Debuchy

7 Sexual Reproduction and Significance of MAT in the Aspergilli 123
Paul S. Dyer

8 The mat Genes of Schizosaccharomyces pombe: Expression, Homothallic Switch, and Silencing 143
Olaf Nielsen and Richard Egel

9 Decisions, Decisions: Donor Preference during Budding Yeast Mating-Type Switching 159
James E. Haber

10 MAT and Its Role in the Homothallic Ascomycete Sordaria macrospora 171
Stefanie Pöggeler

11 Evolution of Silencing at the Mating-Type Loci in Hemiascomycetes 189
Laura N. Rusche and Meleah A. Hickman

12 The Evolutionary Implications of an Asexual Lifestyle Manifested by Penicillium marneffei 201
Matthew C. Fisher

III. ASCOMYCETES: THE CANDIDA MAT LOCUS AND RELATED TOPICS

13 MAT, Mating, Switching, and Pathogenesis in Candida albicans, Candida dubliniensis, and Candida glabrata 215
David R. Soll and Karla J. Daniels

14 Evolution of MAT in the Candida Species Complex: Sex, Ploidy, and Complete Sexual Cycles in C. lusitaniae, C. guilliermondii, and C. krusei 235
Jennifer L. Reedy and Joseph Heitman

15 Ascomycetes: the Candida MAT Locus: Comparing MAT in the Genomes of Hemiascomycetous Yeasts 247
Hélène Muller, Christophe Hennequin, Bernard Dujon, and Cécile Fairhead

IV. BASIDIOMYCETES: THE MUSHROOMS

16 Cloning the Mating-Type Genes of Schizophyllum commune: a Historical Perspective 267
Mary M. Stankis and Charles A. Specht

17 The Origin of Multiple Mating Types in the Model Mushrooms Coprinopsis cinerea and Schizophyllum commune 283
Lorna A. Casselton and Ursula Kues
18 Pheromones and Pheromone Receptors in *Schizophyllum commune*
Mate Recognition: Retrospective of a Half-Century of Progress and a Look Ahead 301
THOMAS J. FOWLER AND LISA J. VAILLANCOURT

19 Analysis of Mating-Type Locus Organization and Synteny in Mushroom Fungi: Beyond Model Species 317
TIMOTHY Y. JAMES

20 Dikaryons, Diploids, and Evolution 333
JAMES B. ANDERSON AND LINDA M. KOHN

V. BASIDIOMYCETES: PLANT AND ANIMAL PATHOGENIC YEASTS

21 History of the Mating Types in *Ustilago maydis* 351
FLORA BANUETT

22 Mating in the Smut Fungi: from a to b to the Downstream Cascades 377
REGINE KAHMANN AND JAN SCHIRAWSKI

23 Bipolar and Tetrapolar Mating Systems in the Ustilaginales 389
GUUS BAKKEREN AND JAMES W. KRONSTAD

VI. ZYGOMYCETES, CHYTRIDIOMYCETES, AND OOMYCETES: THE FRONTIERS OF KNOWLEDGE

24 Sex in the Rest: Mysterious Mating in the Chytridiomycota and Zygomycota 407
ALEXANDER IDNURM, TIMOTHY Y. JAMES, AND RYTAS VILGALYS

25 How the Genome Is Organized in the Glomeromycota 419
TERESA E. PAWLOWSKA

26 Trisporic Acid and Mating in Zygomycetes 431
JOHANNES WÖSTEMEYER AND CHRISTINE SCHIMEK

27 Sexual Reproduction in Plant Pathogenic Oomycetes: Biology and Impact on Disease 445
HOWARD S. JUDELSON

VII. THE IMPLICATIONS OF SEX

28 Origin, Evolution, and Extinction of Asexual Fungi: Experimental Tests Using *Cryptococcus neoformans* 461
JIANGPING XU

29 Sex in Natural Populations of *Cryptococcus gattii* 477
DEE CARTER, NATHAN SAUL, LEONA CAMPBELL, TIEN BUI, AND MARK KROCKENBERGER

30 Why Bother with Sex? Answers from Experiments with Yeast and Other Organisms 489
MATTHEW R. GODDARD
CONTENTS

31 Ploidy and the Sexual Yeast Genome in Theory, Nature, and Experiment 507
 CLIFFORD ZEYL

32 Why Sex Is Good: on Fungi and Beyond 527
 DUUR K. AANEN AND ROLF F. HOEKSTRA

Index 535
Contributors

DUUR K. AANEN
Laboratory of Genetics, Wageningen University and Research Center,
Arboretumlaan 4, 6703 BD Wageningen, The Netherlands

JAMES B. ANDERSON
Dept. of Ecology and Evolutionary Biology, University of Toronto, 3359
Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada

GUUS BAKKEREN
Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada,
Summerland, BC, V0H 1Z0, Canada

FLORA BANUETT
Dept. of Biological Sciences, California State University, 1250 Bellflower Blvd.,
Long Beach, CA 90840

TIEN BUI
School of Molecular and Microbial Biosciences, University of Sydney, Sydney,
NSW 2006, Australia

GERALDINE BUTLER
UCD School of Biomolecular and Biomedical Research, Conway Institute,
University College Dublin, Belfield, Dublin 4, Ireland

LEONA CAMPBELL
School of Molecular and Microbial Biosciences, University of Sydney, Sydney,
NSW 2006, Australia [current address, Dept. of Biochemistry and Molecular
Biology, Saint Louis University School of Medicine, St. Louis, MO 63103]

DEE CARTER
School of Molecular and Microbial Biosciences, University of Sydney, Sydney,
NSW 2006, Australia
LORNA A. CASSELTON
Dept. of Plant Sciences, University of Oxford, Oxford, OX1 3RB, United Kingdom

KARLA J. DANIELS
Dept. of Biology, The University of Iowa, Iowa City, IA 52242

ROBERT DEBUCHY
CNRS, Institut de Génétique et Microbiologie, Bâtiment 400, UMR 8621, and Université Paris-Sud 11, Orsay, F-91405, France

BERNARD DUJON
Génétique Moléculaire des Levures (URA2171 CNRS and UFR927 Université P et M Curie), Institut Pasteur, 25 rue du Docteur Roux, F-75724 Paris Cedex 15, France

PAUL S. DYER
School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom

RICHARD EGEL
Institute of Molecular Biology and Physiology, University of Copenhagen, Copenhagen, Denmark

CECILE FAIRHEAD
Génétique Moléculaire des Levures (URA2171 CNRS and UFR927 Université P et M Curie), Institut Pasteur, 25 rue du Docteur Roux, F-75724 Paris Cedex 15, France

KEISHA M. FINDLEY
Dept. of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710

MATTHEW C. FISHER
Imperial College Faculty of Medicine, Dept. of Infectious Disease Epidemiology, St. Mary’s Campus, Norfolk Place, London W2 1PG, United Kingdom

THOMAS J. FOWLER
Dept. of Biological Sciences, Southern Illinois University-Edwardsville, Edwardsville, IL 62026-1651

JAMES A. FRASER
School of Molecular and Microbial Sciences, University of Queensland, Brisbane, QLD 4072, Australia

MATTHEW R. GODDARD
School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

JAMES E. HABER
Dept. of Biology, Brandeis University, MS029 Rosenstiel Center, Waltham, MA 02454-9110

JOSEPH HEITMAN
Dept. of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710

CHRISTOPHE HENNEQUIN
Faculté de Médecine P et M Curie St-Antoine, 27 rue Chaligny, F-75571 Paris Cedex 12, France
MELEAH A. HICKMAN
Institute for Genome Sciences and Policy, University Program in Genetics and Genomics, Duke University, Durham, NC 27710

ROLF F. HOEKSTRA
Laboratory of Genetics, Wageningen University and Research Center, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands

YEN-PING HSUEH
Dept. of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710

CHRISTINA M. HULL
Dept. of Biomolecular Chemistry and Dept. of Medical Microbiology & Immunology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI 53706

ALEXANDER IDNURM
Dept. of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710

TIMOTHY Y. JAMES
Dept. of Evolutionary Biology, Uppsala University, 752 37 Uppsala, Sweden

ALEXANDER D. JOHNSON
Dept. of Biochemistry & Biophysics and Dept. of Microbiology & Immunology, University of California San Francisco, San Francisco, CA 94143-2200

HOWARD S. JUDELSON
Dept. of Plant Pathology and Microbiology, University of California, Riverside, CA 92521

REGINE KAHMANN
Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany

LINDA M. KOHN
Dept. of Ecology and Evolutionary Biology, University of Toronto, 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada

MARK KROCKENBERGER
Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia

JAMES W. KRONSTAD
The Michael Smith Laboratories, Dept. of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada

URSULA KUES
Institut für Forstbotanik, Georg-August-Universität Göttingen, Büsgenweg 2, Göttingen D-37077, Germany

XIAORONG LIN
Dept. of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710

HÉLOISE MULLER
Génétique Moléculaire des Levures (URA2171 CNRS and UFR927 Université P et M Curie), Institut Pasteur, 25 rue du Docteur Roux, F-75724 Paris Cedex 15, France
OLAF NIELSEN
Institute of Molecular Biology and Physiology, University of Copenhagen,
Copenhagen, Denmark

TERESA E. PAWLOWSKA
Dept. of Plant Pathology, Cornell University, 334 Plant Science Bldg., Ithaca,
NY 14853-5904

STEFANIE PÖGGELER
Dept. of Genetics of Eukaryotic Microorganisms, Institute of Microbiology
and Genetics, Georg-August University Göttingen, Grisebachstr. 8, 37077
Göttingen, Germany

JENNIFER L. REEDY
Dept. of Molecular Genetics and Microbiology, Duke University Medical
Center, Durham, NC 27710

LAURA N. RUSCHE
Institute for Genome Sciences and Policy, Biochemistry Dept., Duke University,
Durham, NC 27710

NATHAN SAUL
School of Molecular and Microbial Biosciences and Faculty of Veterinary
Science, University of Sydney, Sydney, NSW 2006, Australia

CHRISTINE SCHIMEK
Dept. of General Microbiology and Microbial Genetics, Institute of
Microbiology, Friedrich-Schiller-Universität Jena, Neugasse 24, 07743 Jena,
Germany

JAN SCHIRAWSKI
Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany

DAVID R. SOLL
Dept. of Biology, The University of Iowa, Iowa City, IA 52242

CHARLES A. SPECHT
Dept. of Medicine, LRB-370D, Section of Infectious Diseases and Immunology,
University of Massachusetts Medical School, 364 Plantation St., Worcester, MA
01605

MARY M. STANKIS
Dept. of Medicine, LRB-370D, Section of Infectious Diseases and Immunology,
University of Massachusetts Medical School, 364 Plantation St., Worcester, MA
01605

BRYNNE C. STANTON
Dept. of Biomolecular Chemistry, University of Wisconsin-Madison, School
of Medicine and Public Health, Madison, WI 53706

ANNIE E. TSONG
Dept. of Molecular and Cell Biology, University of California, Berkeley,
Lawrence Berkeley National Labs, 1 Cyclotron Rd., Mailstop 84-355, Berkeley,
CA 94720

BRIAN B. TUCH
Dept. of Biochemistry & Biophysics and Dept. of Microbiology & Immunology,
University of California San Francisco, San Francisco, CA 94143-2200

B. GILLIAN TURGEON
Dept. of Plant Pathology, Cornell University, Ithaca, NY 14853
LISA J. VAILLANCOURT
Dept. of Plant Pathology, University of Kentucky, Lexington, KY 40546-0312

RYTAS VILGALYS
Dept. of Biology, Duke University, Durham, NC 27708

JOHANNES WÖSTEMEYER
Dept. of General Microbiology and Microbial Genetics, Institute of Microbiology, Friedrich-Schiller-Universität Jena, Neugasse 24, 07743 Jena, Germany

JIAPING XU
Dept. of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada

CLIFFORD ZEYL
Dept. of Biology, Wake Forest University, P.O. Box 7325, Winston-Salem, NC 27109
This page intentionally left blank
Sexual reproduction is ubiquitous in nature, from organisms as diverse as fungi to plants and animals. As the engine that drives reassortment of genes to generate diversity, sex accelerates adaptation in the ever-changing environment and provides that more progeny avoid the relentless accumulation of deleterious mutations. In these ways, it plays a central role in the origin and success of species. As such, the molecular bases by which sexual identity and reproduction are defined and controlled have captured the interests of biologists for more than a century. These topics and interests have been pursued in a variety of organisms, with significant and wide-ranging contributions coming from explorations in the fungal kingdom. The insights that have come from investigating sexual reproduction in the major groups within the kingdom, including members of the Ascomycetes, Basidiomycetes, Chytridiomycetes, and Zygomycetes, are the subject of this book.

More than 40 years ago, John Raper published a thin text entitled *Genetics of Sexuality in Higher Fungi* (Ronald Press, New York, NY, 1966), which encapsulated much of what was known at that time on this topic in the basidiomycete fungi. While fascinating, the complex genetics of the system represented a puzzle and a challenge. How could it be that model mushroom species possessed literally thousands of mating types, or sexes, rather than the more pedestrian two sexes common in plants and animals and even many other fungi? The understanding came via molecular biology approaches whose advent and application were decades hence (1970s and 1980s). In parallel, advances in other fungal systems, notably the budding yeast *Saccharomyces cerevisiae*, provided further illuminating insights into the molecular details of cell-type specification, mating-type switching, pheromone perception and signaling, and cellular and nuclear fusion. This wealth of detailed molecular information on the wiring of a mating system provided a paradigm that guided research into the mechanisms of mating in all of the other fungi described in this book. With the advent of genomic approaches in
the past 10 years, a window was opened on the entire genomes of many additional fungi, enabling kingdom-wide models of sex determination and sexual cycle evolution to be realized. The tremendous impact of comparative genomics on the analysis of mating is evident in many of the chapters in this book.

Here we have assembled chapters from a contingent of experts in the field to take stock of just how far knowledge of these fascinating biological systems and processes has progressed from 1966 to today. This includes chapters on the evolution and function of the mating-type locus, the specialized region of the genome that governs the establishment of cell type and orchestrates the sexual cycle in fungi. The species described in these chapters represent both the euascomycete and the hemiascomycete lineages of the prominent Ascomycetes phylum of fungi, as well as representatives of the Basidiomycetes, including the wood-rotting model fungus *Schizophyllum commune* that was the focus of John Raper’s life work and his original text.

We have included representative chapters on both model and pathogenic fungi, given that many pathogenic fungi appear to have cryptic sexual cycles that may influence virulence or their evolution. Additionally, a section that looks forward to what we hope to learn in other fungal lineages is encapsulated in four chapters. Finally, the book concludes with a selection of chapters on the implications of sex, and studies of experimental evolution, to round out the discussions in a broader evolutionary context.

It is our hope and intent that the presentations throughout this book are not simply descriptions of the mating type loci, or a parts list of what fungi require for sexual reproduction. Rather, we hope this to be an exposé of the biological and molecular nature of sexual reproduction in an entire kingdom of life, one that is particularly amenable to genetic, molecular, and genomic analysis and that serves as a central paradigm to understand how sexual cycles function in, as well as drive, evolution. The biological principles that have emerged are profound and serve as general paradigms for how cell identity is established and maintained, how cells sense and respond to extracellular cues, the role of genetic rearrangements in generating changes in cell identity and fate, and how genomic regions governing sexual identity are organized and evolved.

We intend this new volume, *Sex in Fungi: Molecular Determination and Evolutionary Implications*, not only to encompass the current state of knowledge and to serve as a resource to guide the next several decades of study on these systems and organisms, but also to pay homage to those who made this effort possible. First, this text is dedicated in appreciation to John and Cardy Raper; to John for his insight in writing a text published in 1966 that is still cited to this day, and which foretold much of what was subsequently discovered on the molecular basis for transitions in mating behavior between out-crossing heterothallic systems and inbreeding homothallic organisms; and to Cardy, for carrying on with the molecular analysis of the *S. commune* mating type loci for several decades in her own laboratory at the University of Vermont after John. John and Cardy inspired a multitude of investigators, including many of the authors of the chapters in this book, and without them the field would certainly not be where it is today.

We also dedicate this text to Ira Herskowitz, who served as a champion for *Saccharomyces cerevisiae* as a premier model system and whose indefatigable efforts resulted in a molecular understanding of mating-type determination and mating-type switching. His elegant and powerful reductionist approaches, applying phage logic to a eukaryotic yeast, made possible the transition from complex genetics to textbook-clear models, establishing this yeast as a paradigm for all of biology. Again, Ira’s intellectual leadership and his encouragement of other inves-
tigators, and of investigations with other fungi, helped inspire and drive the field to the current state documented in this book.

We are indebted to these three individuals for seeing sooner and farther than others, for sharing their vision with us, and for making this text both possible and worthwhile.

It has been our pleasure to serve as the co-editors, and also as authors, for this text and we invite you, the readers, to share your experiences with us. Moreover, we hope that this text inspires some of you to join us in this endeavor and to make it possible and necessary for the next text on this topic to be written.

In closing, we thank our families, our laboratory members, numerous readers, and our editor at ASM Press, Greg Payne, without whose efforts, forbearance, patience, and tolerance this book could not have been realized.

J O S E P H H E I T M A N, Duke University
J A M E S W. K R O N S T A D, University of British Columbia
J O H N W. T A Y L O R, University of California, Berkeley
L O R N A A. C A S S E L T O N, University of Oxford
This page intentionally left blank
It is a poignant and sobering realization that a book entitled *Sex in Fungi* will be published without a chapter from Ira Herskowitz. Although the book is poorer for lacking his chapter, we can celebrate Ira’s many other contributions to this volume, contributions so deep and pervasive that they probably outweigh those of any other single scientist. In the numerous citations of his work, the many authors of this volume whose careers he helped guide, the influence of his writing and diagrammatic style, and finally, the scientific work itself, Ira’s influence pervades this volume and continues to shape our research. Ira convinced us all that when he studied sex in fungi he was really studying fundamental problems in cell and molecular biology. Through his engaging personality, his accessible speaking style, and his many influential reviews and research articles, he provoked even the most narrowly focused biologist to think about fungal sex. Ira’s work, and his influence on others, have thrust fungal mating into the pages of all major college textbooks in biology.

But it is the creative use of genetics as an exploratory tool that is Herskowitz’s greatest legacy. Many scientists, from beginning students to accomplished professors, have tried to carry out “Ira-type” experiments—simple genetic studies designed to solve an outstanding biological problem in a new field. And some have succeeded, guided not only by the Herskowitz example, but often by the man himself. When it came to discussing a biological problem, Ira was generous with his time and seemingly tireless. Many biologists credit a discussion with him for pushing (or more often enticing) them to delve into new experimental realms or to develop a new way of conceptualizing old problems.

Ira’s first papers were published in 1970, while a graduate student with Ethan Signer at MIT. He solved an important problem in gene regulation of bacteriophage λ: how a single regulatory protein turns on a whole battery of phage genes. Setting the style for much of his future work, Herskowitz attacked the problem using solely genetics, showing that the activator protein, called Q, must work at