Fundamentals of aluminium metallurgy
Production, processing and applications

Edited by Roger Lumley
Fundamentals of aluminium metallurgy
Related titles:

Titanium alloys: modelling of microstructure, properties and applications
(ISBN 978-1-84569-375-6)
Computer-based modelling of material properties and microstructure is a fast-growing area of research and the use of titanium is also growing rapidly in many applications. The book links the modelling of microstructure and properties to titanium. The first part of the book reviews experimental techniques for modelling the microstructure and properties of titanium. A second group of chapters looks in depth at the physical models and a third group examines neural network models. The final section covers surface engineering products.

Friction stir welding: from basics to applications
(ISBN 978-1-84569-450-0)
Friction stir welding (FSW) is a solid-state welding process that is gaining wide acceptance in industry, especially the shipbuilding, aerospace, mass transportation and automotive industries. FSW is particularly suited to those industries that use aluminium and its alloys. This authoritative book provides a comprehensive review of the subject of friction stir welding and covers topics such as process basics, equipment, modelling, inspection and quality control and applications.

Hydrometallurgy: principles and applications
The book is concerned with the theoretical principles of hydrometallurgical processes and engineering aspects. The hydrometallurgical processes of production of copper are discussed and leaching of chalcopyrite as the main sulphide mineral of copper processed in industry is used as an example. The book is suitable as a university textbook for students of metallurgy.

Details of these and other Woodhead Publishing books can be obtained by:
• visiting our web site at www.woodheadpublishing.com
• contacting Customer Services (e-mail: sales@woodheadpublishing.com; fax: +44 (0) 1223 893694; tel.: +44 (0) 1223 891358 ext. 130; address: Woodhead Publishing Limited, Abington Hall, Granta Park, Great Abington, Cambridge CB21 6AH, UK)

If you would like to receive information on forthcoming titles, please send your address details to: Francis Dodds (address, tel. and fax as above; e-mail: francis.dodds@woodheadpublishing.com). Please confirm which subject areas you are interested in.
Contents

Contributor contact details

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to aluminium metallurgy</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>R.N. Lumley, CSIRO Light Metals Flagship, Australia</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Aluminium as an engineering material</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>The development of aluminium alloys</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Cast aluminium alloys</td>
<td>5</td>
</tr>
<tr>
<td>1.4</td>
<td>Wrought aluminium alloys</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>Production of aluminium</td>
<td>8</td>
</tr>
<tr>
<td>1.6</td>
<td>Uses of aluminium</td>
<td>8</td>
</tr>
<tr>
<td>1.7</td>
<td>Conclusion</td>
<td>17</td>
</tr>
<tr>
<td>1.8</td>
<td>References</td>
<td>18</td>
</tr>
</tbody>
</table>

Part I Production and casting of aluminium and its alloys

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Production of alumina</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>J. Metson, The University of Auckland, New Zealand</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction to the aluminium oxides</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>Al minerals – mining and processing</td>
<td>24</td>
</tr>
<tr>
<td>2.3</td>
<td>Alumina production processes</td>
<td>27</td>
</tr>
<tr>
<td>2.4</td>
<td>The Bayer alumina refinery</td>
<td>30</td>
</tr>
<tr>
<td>2.5</td>
<td>Alumina microstructure</td>
<td>38</td>
</tr>
<tr>
<td>2.6</td>
<td>Impurities</td>
<td>40</td>
</tr>
<tr>
<td>2.7</td>
<td>Production of speciality aluminas</td>
<td>42</td>
</tr>
<tr>
<td>2.8</td>
<td>Alumina production trends</td>
<td>43</td>
</tr>
<tr>
<td>2.9</td>
<td>Acknowledgements</td>
<td>44</td>
</tr>
<tr>
<td>2.10</td>
<td>References</td>
<td>44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Production of primary aluminium</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>H. Kvande, Qatar University, Qatar</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>49</td>
</tr>
<tr>
<td>3.2</td>
<td>Raw materials used in the aluminium production process</td>
<td>51</td>
</tr>
</tbody>
</table>
3.3 Energy efficiency in the utilisation of carbon anodes 52
3.4 The carbon anodes 52
3.5 Electrolyte materials 54
3.6 The cathode and cathode materials 56
3.7 Current efficiency 57
3.8 Cell amperage increase 60
3.9 Cell lines 61
3.10 Health, environment and safety (HES) 63
3.11 Inert anodes 65
3.12 The past, present and future of primary aluminium production 67
3.13 Acknowledgements 69
3.14 References 69

4 Production of secondary aluminium 70
G. WALLACE, Sims Aluminium Pty Limited, Australia
4.1 History of secondary aluminium 70
4.2 Sources of raw materials 73
4.3 Processing 78
4.4 Cost drivers 81
4.5 Future trends 81
4.6 Further reading 82
4.7 Reference 82

5 Ingot casting and casthouse metallurgy of aluminium and its alloys 83
J.F. GRANDFIELD, Grandfield Technology Pty Ltd, Australia
5.1 Direct chill casting 83
5.2 Heat flow and solidification 86
5.3 Macrosegregation 97
5.4 Typical surface defects 98
5.5 Gas pressurised extrusion billet casting 105
5.6 Rolling slab technology 107
5.7 Special variants of DC casting 108
5.8 DC casting safety 108
5.9 Chain conveyor casting 108
5.10 Melt treatment 110
5.11 Conclusion 123
5.12 Notes 124
5.13 References 124

6 Casting of aluminium alloys 141
S. OTARAWANNA, National Metal and Materials Technology Center (MTEC), Thailand and A.K. DAHLE, The University of Queensland, Australia
6.1 Introduction 141

© Woodhead Publishing Limited, 2011
Contents vii

6.2 Aluminium casting alloys 141
6.3 Microstructure control in aluminium foundry alloys 142
6.4 Filling the casting 143
6.5 Feeding and porosity 144
6.6 Casting processes 144
6.7 Summary 153
6.8 References 153

7 Quality issues in aluminum castings 155
G.K. SIGWORTH, GKS Engineering Services, USA

7.1 Introduction 155
7.2 Standard molds 156
7.3 Effect of solidification time 162
7.4 Theoretical basis for the quality index 164
7.5 Effect of inclusions and porosity on quality 167
7.6 Fatigue failure 169
7.7 Sources of casting defects 174
7.8 Effect of metal treatment and transfer on quality 177
7.9 Possible improvements in fatigue life 180
7.10 Conclusion 182
7.11 References 182

8 Case studies in aluminium casting alloys 185
J.A. TAYLOR and D.H. STJOHN, CAST CRC, The University of Queensland, Australia and M.A. EASTON, CAST CRC, Monash University, Australia

8.1 Introduction 185
8.2 The effect of the alloy specification range on microstructure and properties 186
8.3 An impurity that reduces castability and increases casting defects 190
8.4 The effect of grain refinement on defect formation 195
8.5 The effect of excess titanium on foundry alloys 202
8.6 Selecting the right master alloy for grain refinement in terms of effectiveness and cost optimisation 207
8.7 Selecting the right master alloy for eutectic modification in terms of effectiveness and cost optimisation 208
8.8 Summary 214
8.9 References 214

9 High pressure die casting of aluminium and its alloys 217
M.T. MURRAY, M Murray & Associates Pty Ltd, Australia

9.1 History of high pressure die casting 217
9.2 The die casting process 221
9.3 Aluminium alloys used in die casting 232
9.4 Defects in die casting 235
Part II Metallurgical properties of aluminium and its alloys

11 Work hardening in aluminium alloys
 W.J. POOLE and J.D. EMBURY, The University of British Columbia, Canada and D.J. LLOYD, Novelis Global Technology Centre, Canada

 11.1 Introduction
 11.2 Fundamentals of work hardening
 11.3 Models of work hardening
 11.4 Applications of work hardening models to industrial alloys
 11.5 Commercial aspects of work hardening
 11.6 Conclusion and future trends
 11.7 Acknowledgements
 11.8 Notes
 11.9 References

12 Precipitation and solute clustering in aluminium: advanced characterisation techniques
 G. SHA, R.K.W. MARCEAU and S.P. RINGER, The University of Sydney, Australia

 12.1 Introduction
 12.2 Al-Cu based alloys
 12.3 Al-Cu-Mg based alloys
 12.4 Al-Mg-Si based alloys
 12.5 Al-Zn-Mg-(Cu) based alloys
 12.6 Precipitation in Al alloys under severe plastic deformation
 12.7 Conclusion
 12.8 Acknowledgements
 12.9 References
13 Solute partitioning to enhance mechanical properties of aged aluminium alloys 367
 I.J. POLMEAR, Monash University, Australia
 13.1 Introduction 367
 13.2 Solute partitioning through compositional change 368
 13.3 Studies of underaged alloys 371
 13.4 Secondary precipitation 379
 13.5 Conclusion 381
 13.6 Acknowledgments 382
 13.7 References 383

14 Vacancies in aluminium and solute-vacancy interactions in aluminium alloys 386
 A. SOMOZA, Universidad Nacional del Centro de la Provincia de Buenos Aires and Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, Argentina and A. DUPASQUIER, Politecnico di Milano, Italy
 14.1 Introduction 386
 14.2 Experimental studies of vacancies and solute-vacancy interactions 388
 14.3 Modelling 408
 14.4 Conclusion 415
 14.5 Acknowledgements 416
 14.6 References 416

15 Modeling the kinetics of precipitation processes in aluminium alloys 422
 C.R. HUTCHINSON, Monash University, Australia
 15.1 Introduction 422
 15.2 Physical processes controlling precipitation 425
 15.3 Current approaches to modeling precipitation kinetics 426
 15.4 Coupling precipitation and plastic deformation 458
 15.5 Future trends and perspectives 461
 15.6 References 462

16 Ultrafine-grained aluminium alloys: processes, structural features and properties 468
 Y. ESTRIN, Monash University and CSIRO Process Science and Engineering, Australia and M. MURASHKIN and R.VALIEV, Ufa State Aviation Technical University, Russia
 16.1 Introduction 468
 16.2 Severe plastic deformation techniques used in processing of Al alloys 469
 16.3 Producing ultrafine-grained aluminium alloys by means of SPD techniques 473
x

Contents

16.4 Mechanical properties of UFG Al alloys at room temperature 480
16.5 Innovation potential of UFG Al alloys 494
16.6 Conclusion 497
16.7 Acknowledgements 497
16.8 References 497

17 Design for fatigue crack growth resistance in aluminum alloys 504
D.A. Lados, Worcester Polytechnic Institute, USA
17.1 Introduction 504
17.2 Background and current state of knowledge 505
17.3 Materials, processing, mechanical properties and fatigue crack growth testing 507
17.4 Fatigue crack propagation in the near-threshold regime 510
17.5 Fatigue crack propagation mechanisms in Regions II and III of crack growth 520
17.6 K_{max} and stress ratio effects on fatigue crack growth 526
17.7 A dual parameter $\Delta K-K_{\text{max}}$ approach to fatigue crack growth 529
17.8 K_{max} sensitivity and data normalization for generating design curves 530
17.9 Conclusion 532
17.10 References 532

18 Fracture resistance in aluminium 538
J.F. Knott, The University of Birmingham, UK
18.1 Introduction 538
18.2 Fracture in uni-axial tension 539
18.3 Fracture in thin sheet: stretching and deep-drawing operations 544
18.4 Fracture in aluminium alloy castings 548
18.5 Fracture in high strength wrought alloys: fracture toughness 551
18.6 The fracture toughness of aluminium alloys: micro-structural aspects 557
18.7 Fracture in aluminium particulate metal-matrix composites 563
18.8 Effects of serrated yielding (dynamic strain-aging) on fracture 565
18.9 Future trends: optimised properties versus ‘fitness for purpose’ 569
18.10 References 571

19 Corrosion and corrosion protection of aluminium 574
N. Birbilis and B. Hinton, Monash University, Australia
19.1 Introduction 574
19.2 General, galvanic and pitting corrosion 575
19.3 Localised corrosion: intergranular and exfoliation 582
19.4 Environmentally assisted cracking 584

© Woodhead Publishing Limited, 2011
19.5 Corrosion protection in the aircraft structure 590
19.6 Summary case study: corrosion of a C-130J Hercules aircraft wing trailing edge strip 593
19.7 Acknowledgements 601
19.8 References 601

Part III Processing and applications of aluminium and its alloys 605

20 Joining of aluminium and its alloys 607
S. LATHABAI, CSIRO Process Science and Engineering, Australia
20.1 Introduction 607
20.2 Mechanical joining 609
20.3 Fusion welding 618
20.4 Solid state welding 630
20.5 Brazing 643
20.6 Adhesive bonding 647
20.7 Conclusion 650
20.8 References 650

21 Aluminium powder metallurgy 655
S.H. HUO, M. QIAN and G.B. SCHAEFFER, The University of Queensland, Australia and E. CROSSIN, The University of Queensland, Australia and RMIT University, Australia
21.1 Introduction 655
21.2 The press and sinter powder metallurgy process 655
21.3 Sintering fundamentals 658
21.4 Sintering of aluminium 678
21.5 PM aluminium alloys and their applications 688
21.6 Future trends 692
21.7 Acknowledgements 694
21.8 References 694

22 Laser sintering and rapid prototyping of aluminium 702
T.B. SERCOMBE, The University of Western Australia, Australia
22.1 Introduction 702
22.2 The skeleton 705
22.3 Infiltration 711
22.4 Dimensional changes 713
22.5 Conclusion 714
22.6 Acknowledgements 715
22.7 References 715
23 Aluminium sheet fabrication and processing 719
 J. HIRSCH, Hydro Aluminium Deutschland GmbH, Germany
 23.1 Introduction 719
 23.2 Aluminium alloys and specifications 721
 23.3 The aluminium sheet fabrication processing route and microstructure evolution 725
 23.4 Parameters and metallurgical effects in Al alloy sheet processing 741
 23.5 Integrated material and through-process modelling 743
 23.6 Conclusion 744
 23.7 Acknowledgements 745
 23.8 References 745

24 Application of modern aluminium alloys to aircraft 747
 E.A. STARKE, JR and J.T. STALEY, Consultant, University of Virginia, USA
 24.1 Introduction 747
 24.2 Drivers for materials selection and aluminum alloy product development for aircraft 749
 24.3 Performance criteria and property requirements for primary structure of subsonic aircraft 751
 24.4 Structure–property relationships 754
 24.5 New products and recent manufacturing technologies 775
 24.6 Conclusion 780
 24.7 References 780

25 Materials selection and substitution using aluminium alloys 784
 M. LEARY, RMIT University, Australia
 25.1 Introduction 784
 25.2 Fundamental material selection strategies 785
 25.3 Material selection for specific scenarios 791
 25.4 Non-stationary fatigue-limited application 803
 25.5 Multi-objective problems and numeric optimisation 804
 25.6 Multiple objective material selection 811
 25.7 Environmental consequence of material selection 816
 25.8 Conclusion 822
 25.9 Acknowledgements 824
 25.10 Notes 824
 25.11 References 824

Index 828
Contributor contact details

(* = main contact)

Editor and chapters 1 and 10
Roger Lumley
Principal Research Scientist
CSIRO Light Metals Flagship
Private Bag 33
Clayton South MDC
Melbourne
Victoria 3169
Australia
E-mail: Roger.Lumley@csiro.au

Chapter 3
Halvor Kvande
Professor of Chemical Engineering
Department of Chemical Engineering
Qatar University
P.O. Box 2713
Doha
Qatar
E-mail: halvorkvande@qu.edu.qa;
halvor.kvande@hydro.com

Chapter 2
James Metson
Department of Chemistry and Light Metals Research Centre
The University of Auckland
Private Bag 92019
Auckland, 1142
New Zealand
E-mail: j.metson@auckland.ac.nz

Chapter 4
Graeme Wallace
Trading Manager
Sims Aluminium Pty Limited
P.O. Box 602 Sunshine VIC 3187
Australia
E-mail: graeme.wallace@simsmm.com
Chapter 5
John F. Grandfield
Grandfield Technology Pty Ltd
37 Mattingley Cr
Brunswick West
Victoria 3055
Australia
E-mail: grandfieldtechnology@gmail.com

M.A. Easton
CAST Cooperative Research Centre
Monash University
Clayton
Victoria 3069
Australia
E-mail: mark.easton@eng.monash.edu.au

Chapter 6
Somboon Otarawanna
Researcher/National Metal and Materials Technology Center (MTEC)
Thailand

Arne K Dahle*
Professor of Materials Engineering
The University of Queensland
Australia
E-mail: A.Dahle@uq.edu.au

Chapter 7
Geoffrey K. Sigworth
GKS Engineering Services
1710 Douglas Ave
Dunedin
FL 34698
USA
E-mail: gksigworth@gmail.com

Chapter 8
J.A. Taylor*
D.H. StJohn
CAST Cooperative Research Centre
The University of Queensland
St Lucia
Queensland 4072
Australia
E-mail: john.taylor@uq.edu.au; d.stjohn@uq.edu.au

W.J. Poole* and J.D. Embury
Department of Materials Engineering
The University of British Columbia
309-6350 Stores Road
Vancouver
BC, V6T 1Z4
Canada
E-mail: warren.poole@ubc.ca

D.J. Lloyd
Novelis Global Technology Centre
P.O. Box 8400
945 Princess Street
Kingston
Ontario
K7L 5L9
Canada

© Woodhead Publishing Limited, 2011
Contributor contact details xv

Chapter 12
G. Sha*, R.K.W. Marceau and S.P. Ringer
Australian Key Centre for Microscopy and Microanalysis
Madsen Building F09
The University of Sydney
New South Wales 2006
Australia
E-mail: s.ringer@usyd.edu.au; g.sha@usyd.edu.au

Chapter 13
I.J. Polmear
Professor Emeritus
Department of Materials Engineering
Monash University
Melbourne 3800
Australia
E-mail: ian.polmear@eng.monash.edu.au

Chapter 14
Alberto Somoza*
Instituto de Física de Materiales Tandil – IFIMAT
Universidad Nacional del Centro de la Provincia de Buenos Aires and Comisión de Investigaciones Científicas de la Provincia de Buenos Aires
Pinto 399
B7000GHG Tandil
Argentina
E-mail: asomoza@exa.unicen.edu.ar

Alfredo Dupasquier
Department of Physics
LNESS
Politecnico di Milano
via Anzani 42
I-22100 Como
Italy

Chapter 15
Christopher R. Hutchinson
Department of Materials Engineering
Monash University
Clayton Campus
Clayton
Victoria 3800
Australia
E-mail: christopher.hutchinson@monash.edu

Chapter 16
Yuri Estrin*
ARC Centre of Excellence for Design in Light Alloys
Department of Materials Engineering
Monash University, Clayton 3800 VIC
Australia
E-mail: yuri.estrin@eng.monash.edu.au

and

CSIRO Division of Process Science and Engineering
Clayton South 3169 VIC
Australia

© Woodhead Publishing Limited, 2011
Chapter 17
Diana A. Lados
Department of Mechanical Engineering
Integrative Materials Design Center
Worcester Polytechnic Institute
Washburn Building
100 Institute Road
Worcester
Massachusetts 01609
USA
E-mail: lados@wpi.edu

Chapter 18
John F. Knott
School of Metallurgy and Materials
The University of Birmingham
Elms Road
Edgbaston
Birmingham B15 2TT
UK
E-mail: J.F.Knott@bham.ac.uk

Chapter 19
Nick Birbilis*
Monash University
Australia
E-mail: nick.birbilis@eng.monash.edu.au

Chapter 20
Bruce Hinton
Monash University
Australia
E-mail: bruce.hinton@eng.monash.edu.au

Chapter 21
S. Lathabai
Principal Research Scientist
CSIRO Process Science and Engineering
Private Bag 33, Clayton South MDC
Victoria 3169
Australia
E-mail: sri.lathabai@csiro.au

S.H. Huo*, Ma Qian and G.B. Schaffer
The University of Queensland
School of Mechanical and Mining Engineering
CAST CRC
Brisbane
QLD 4072
Australia
E-mail: Shuhai.huo@uq.edu.au

E. Crossin
The University of Queensland
School of Mechanical and Mining Engineering
CAST CRC
Brisbane
QLD 4072
Australia
E-mail: enda.crossin@rmit.edu.au

and
Abstract: This chapter provides the introduction to the book and gives a brief overview of the history and growth of the global aluminium industry up to the present day, including some of the significant achievements, breakthroughs and challenges. It also discusses the future avenues of growth and where the global industry may be headed over the next 20 years.

Key words: aluminium industry, aluminium alloys, primary aluminium, secondary aluminium.

1.1 Aluminium as an engineering material

Aluminium is the third most abundant element in the earth’s crust, and the most abundant metallic element. For the last 50 years, it has been second only to iron in its industrial use. Aluminium does not occur in an elemental state; rather it is always combined in a chemical compound. Its existence was not recognized until 1808, when an impure form was identified by Sir Humphry Davy in Britain. In 1825, Hans Christian Oersted of Denmark produced minute quantities of the metal, and two years later Freidrich Wöhler of Germany described a process for producing aluminium as a powder by reacting potassium with anhydrous aluminium chloride. In 1845, he determined its specific gravity thereby establishing it as a low-density metal. The first commercial process for producing aluminium was developed by Henri Sainte-Claire Deville in 1854, using an improved version of Wöhler’s process. The metal was, however, still very expensive, and during the next 30–40 years numerous attempts were made to develop more economic processes whereby costs could be reduced. Developments during this period are described in an interesting book by Aldophe Minet (1902, 1905) published first in German in 1902 and then English in 1905.

The development of the present electrolytic process occurred almost simultaneously in 1886 by Charles Martin Hall in the United States and Paul L.T Héroult of France (i.e. the Hall–Héroult process). This represented a major advance, since it opened the way for the economical production of aluminium, which began in about 1890. One essential stage in the process was the extraction of alumina (Al₂O₃) from the ore bauxite, and an efficient method to do this was developed by Karl Joseph Bayer in 1888. A further essential factor was the availability since the early 1870s of generators capable of supplying electricity on the large scales required for electrolysis. To this day, the Bayer and the Hall–Héroult processes have remained the most economical methods for the production of commercial quantities of aluminium, and are the mainstay of the primary aluminium industry.